If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-2X-122=0
a = 1; b = -2; c = -122;
Δ = b2-4ac
Δ = -22-4·1·(-122)
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{123}}{2*1}=\frac{2-2\sqrt{123}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{123}}{2*1}=\frac{2+2\sqrt{123}}{2} $
| r-33/6=60 | | 5x-(x+1)=5-x | | 5x+3=x-0 | | 11x-9x=5+2x-3 | | 6(c+4)=90 | | 1.02x=1,5 | | 3(b-4)=-2b+8 | | 90=6(c+4) | | 4b-2=3b-4 | | 5z^2+5z=0 | | 2(11-4x=38 | | s-62/7=3 | | f/5+14=19 | | 3/5x-6=x | | 3+5|8-2x|=63 | | 6z+z=6z-9 | | 2u+2(80)=450 | | ∠A=6x−2∘∠B=4x+48∘ | | 0=v4+4 | | -3(x+5)=2(×+5) | | 2x/2x^2-5=(-x) | | -47=1/2(8a-4)-9 | | 7y-10=-1+4y | | 2x/3+5x/6=3x/8-9/8 | | -3w-6=-7w+9+9 | | -6m=-5m+4 | | (-29b)+4b+(-19b)+(-47)=41 | | 7h=1+8h | | Y=x-2(x-3) | | 3d-10-5d=6-4d | | 36.54=p+.06p | | 20h+(-19h)-41h-(-h)-(-2)=41 |